These data and related items of information have not been formally disseminated by NOAA, and do not represent any agency determination, view, or policy.

NTH Consultants, Ltd.

Infrastructure Engineering and Environmental Services 41780 Six Mile Road, Suite 200 Northville, MI 48168 248.553.6300 248.324.5179 Fax

Ms. Emily McKinnon, P.E. Principal, Director of Operations SmithGroup 201 Depot Street, Second Floor Ann Arbor, Michigan 48104

RE: Geotechnical Exploration Report Sugar Island Habitat Restoration Project Grosse Ile Township, Michigan

Dear Ms. McKinnon:

In accordance with the scope of services presented and agreed upon in our proposal dated March 13, 2019, NTH Consultants, Ltd. (NTH) has completed the geotechnical exploration for the Sugar Island Habitat Restoration Project in Grosse Ile Township, Michigan. The purpose of this investigation was to explore and evaluate the general subsurface conditions at the site, and to provide geotechnical recommendations for the SmithGroup's proposed design for the barrier islands and flow deflector peninsula. The details of our exploration as well as our evaluations and recommendations are presented herein.

We appreciate this opportunity to be of service to you and trust that the information provided in the attached report satisfies your needs. If you have any questions, or if we may be of further assistance, please contact us.

Sincerely,

NTH Consultants, Ltd.

Deep Bansal Project Engineer

DB/JRE/mlk

Attachments

Jason R. Edberg Senior Vice President

March 12, 2021 NTH Project No. 61-190115

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	PROJECT BACKGROUND	1
	2.1 PROPOSED DEVELOPMENT	1
3.0	CURRENT GEOTECHNICAL STUDY	2
	3.1 FIELD EXPLORATION	2
	3.2 PRESENTATION OF DATA	2
	3.3 LABORATORY TESTING	3
4.0	SUBSURFACE CONDITIONS	3
	4.1 DESIGN SOIL PROFILE – BARRIER ISLANDS	3
	4.2 SUBSOIL ENGINEERING PROPERTIES	4
5.0	SLOPE STABILITY EVALUATION	5
	5.1 ANALYSIS APPROACH	5
	5.2 SLOPE STABILITY ANALYSIS RESULTS	6
6.0	SETTLEMENT ANALYSIS	7
7.0	RECOMMENDATIONS	7
8.0	LIMITATIONS	7

O:\Active PROJ\61-190115_Sugar Island Habitat\730 - Reports\Final\001-0312-RPT.docx

APPENDIX A

5A – 5B

TEST BORING LOCATION PLAN	1
NTH GENERAL NOTES	2
LOGS OF TEST BORING	3
TABULATION OF LABORATORY TEST DATA	4

APPENDIX B

BARRIER ISLAND DESIGN DRAWINGS BY SMITHGROUP

APPENDIX C

SLOPE STABILITY PLOTS

DESIGN SOIL PROFILES

O:\Active PROJ\61-190115_Sugar Island Habitat\730 - Reports\Final\001-0312-RPT.docx

1.0 INTRODUCTION

This report presents the results of a geotechnical exploration performed by NTH Consultants, Ltd. (NTH) for the proposed Sugar Island Habitat restoration project in Grosse Ile Township, Michigan. The purpose of this investigation was to explore and evaluate the general subsurface conditions at the site and to provide geotechnical recommendations for the proposed barrier islands, along the southern portion of Sugar Island, and flow deflector peninsula, along the southwest portion of Sugar Island, located within the Detroit River in Grosse Ile Township, Michigan.

Our exploration was conducted on the basis of information provided to NTH regarding the proposed Sugar Island Habitat restoration project. The data obtained during our geotechnical exploration, along with our evaluations, recommendations, and analyses, are provided in the following sections of this report.

2.0 PROJECT BACKGROUND

Sugar Island is a small island in the Detroit River between Grosse Ile and Boblo Island and is part of Grosse Ile Township, Wayne County, Michigan. It lies about 0.5 miles (0.80 km) west of the border with Canada as shown on the Exploration Location Plan, Figure No. 1 in the Appendix. Currently, the island is uninhabited and entirely owned by the U.S. Fish and Wildlife Service (USFWS) as part of the Detroit River International Wildlife Refuge. Most of the island is wooded, a resting point for many species of migratory birds, and it is known for its white sandy beaches and easy access by boat.

We understand that SmithGroup has been contracted by Friends of the Detroit River to design the site improvements. NTH was retained by SmithGroup to provide the geotechnical design services for the project.

2.1 PROPOSED DEVELOPMENT

Based on the preliminary information provided by SmithGroup, the proposed design consists of five new barrier islands, three flow deflector peninsulas (Stone Revetment), shoreline stabilization and an expanded beach on the island's east side. This geotechnical report focuses on the barrier islands and flow deflector peninsulas planned for the project.

The proposed barrier islands are located around the southern edge of Sugar Island. Based on the information provided, two types of barrier islands (Type A and B) are planned for the site. Both types of barrier island include a stone core, a stone under layer, a stone armor layer, and a "strip" of planting soil at the crest. The design drawings (Appendix B) present a plan view and cross-sections of the islands.

The proposed flow deflector peninsulas are located along the southwest edge of Sugar Island. Similar to the barrier islands, the flow deflector peninsulas will consist of a stone core, a stone under layer and stone armor layer. They will extend offshore to a maximum distance of 210 feet as shown in the plan view (Appendix B).

3.0 CURRENT GEOTECHNICAL STUDY

3.1 FIELD EXPLORATION

Field work for the geotechnical exploration was conducted between October 02 and October 05, 2020. Prior to the start of drilling activities, a special use permit was obtained from USFWS to perform soil borings in the Detroit River.

The geotechnical exploration consisted of drilling five test borings, designated as TB-1 through TB-5. The approximate boring locations are presented on the Exploration Location Plan, Figure No. 1 of Appendix A. Test boring locations were selected by SmithGroup and the borings were located in the field by NTH using a handheld GPS. As such, locations shown on the exploration location plan are approximate.

Test borings were drilled by 7NT Engineering Company under the direct observation of an NTH geologist. The borings were drilled using a CME-750X all-terrain drill rig (ATV) atop a barge. The depth of test borings ranged between 20 to 31.5 feet below the surface of the river. The boreholes were advanced using 4-inch diameter casing. Upon completion, the test borings were backfilled with soil cuttings and/or bentonite grout.

Within each test boring, soil samples were typically obtained continuously (every 1.5-foot intervals) within the upper 15 feet and at 5-foot intervals thereafter to the termination depth. The soil samples were obtained using the Standard Penetration Test (SPT) Method (ASTM D 1586), described in the attached General Notes, Figure No. 2 of the Appendix A. In addition to the split-spoon samples, one undisturbed Shelby tube sample was collected in TB-4.

The soil samples obtained with the split-spoon sampler were sealed in jars and the ends of the Shelby tube were sealed with wax to preserve the in-situ moisture content prior to transportation to our laboratory for further classification and testing.

3.2 PRESENTATION OF DATA

NTH has evaluated the soil and groundwater conditions encountered in the test borings and has presented these conditions in the form of individual Logs of Test Boring (see Figure No. 3 of the Appendix A). In addition to subsoil stratification, the test boring logs present Standard Penetration Test (SPT) results, drilling and sampling information, and other pertinent data. We have prepared the test boring logs based on field and laboratory classification and testing. General notes defining the nomenclature used on the logs and elsewhere in this report are presented in Figure No. 2 of Appendix A.

The stratification shown on the Logs of Test Boring represents the subsurface conditions at the actual boring locations. Variations may occur between and away from the borings. Additionally, the stratigraphic lines represent the approximate boundary between soil types; however, the transition may be more gradual than what is shown.

3.3 LABORATORY TESTING

Representative soil samples obtained during the field exploration were subjected to laboratory testing to measure in-situ dry density, moisture content, Atterberg limits, and unconfined compressive strength on representative cohesive soils. The results of the laboratory tests are presented on the attached Tabulation of Laboratory Test Data, Figure No. 4 of Appendix A. In addition to their presentation on the Tabulation of Laboratory Test Data, in-situ dry density, moisture content, and unconfined compressive strength values are also presented on the individual Logs of Test Boring.

In addition to the laboratory testing, field pocket penetrometer measurements were taken on selected cohesive soil samples recovered from the test borings as an aid in evaluating the consistency of the soils. The pocket penetrometer values are also presented on the boring logs.

4.0 SUBSURFACE CONDITIONS

On the basis of information obtained during the field investigation, it appears that subsurface conditions within the area are relatively uniform. At the test boring locations, the depth of the river ranges between 5 and 9 feet. The subsurface soil conditions generally consist of very soft to hard silty clay deposits underlain by shale bedrock.

Test Borings TB-1, TB-2, TB-4, and TB-5 were located south of Sugar Island within the general vicinity of the proposed barrier islands and TB-3 was located west of Sugar Island near the flow deflector peninsulas. Two design soil profiles (DSPs) were developed on the basis of the field testing as well as the laboratory testing from the subsurface soils from the test borings completed within the vicinity of the proposed barrier islands and flow deflector peninsulas, respectively. They are included herewith as Figure No. 5A and Figure No. 5B in Appendix A and are summarized in the following sections.

4.1 **DESIGN SOIL PROFILE**

BARRIER ISLANDS

Review of the subsurface conditions near the barrier islands indicates that stiff to very stiff gray silty clay was encountered at the riverbed 5 to 7 feet below the water's surface at an approximate elevation of 568 feet. Stiff to very stiff clay extended downward to an elevation of 552 feet. Below 552 feet, the consistency of the clay was found to be medium. It extended to the top of the weathered shale bedrock which was encountered at a depth of 25.5 feet and an elevation of approximately 548.5 feet, the engineering properties of these layers are presented in Table 1 and in the DSP (Figure 5A).

FLOW DEFLECTOR PENINSULA (TB-3)

Review of the subsurface conditions near the flow deflector peninsula indicates that very soft gray silty clay was encountered at the riverbed 9 feet below the water's surface at an approximate elevation of 565 feet. The very soft clay extended downward to an elevation of 560.5 feet. Below

560.5 feet, the consistency of the clay was found to be medium. It extended to the top of the weathered shale bedrock which was encountered at a depth of 23.6 feet and an elevation of approximately 550.4 feet. The engineering properties of these layers are presented in Table 2 and in the DSP (Figure 5B).

4.2 SUBSOIL ENGINEERING PROPERTIES

Conditions encountered in the test borings completed for this study were used to model the subsoil profile and material engineering properties. Table 1 shows the materials and their properties used in the stability and settlement analysis model for the site.

Material Name	Total Unit	Effectiv (Drai	e Stress ined)	Stress ained)	Coeffic Compre	cient of essibility	
	Weight, γ (pounds per cubic foot)	Effective Cohesion, c' (psf)	Effective Angle of Friction, φ' (degrees)	Cohesion, c (psf)	Angle of Friction, φ (degrees)	Cc	Cr
Stiff to Very Stiff Gray SILTY CLAY	142	0	28	2,250	0	0.13	0.013
Medium Gray SILTY CLAY	127	0	28	580	0	0.27	0.027
Weathered SHALE	140	0	38	N/A	N/A	N	/A
Rock (Shale)	150	Infinite	N/A	Infinite	N/A	N	/A

Table 1: Material Properties (Barrier Islands)

Material Name	Total Unit	Effective Stress Total Stress (Drained) (Undrained)				Coefficient of Compressibility			
	Weight, γ (pounds per cubic foot)	Effective Cohesion, c' (psf)	Effective Angle of Friction, φ' (degrees)	Cohesion, c (psf)	Angle of Friction, φ (degrees)	Cc	Cr		
Very Soft SILTY CLAY	100	0	28	150	0	0.34	0.034		
Medium Gray SILTY CLAY	127	0	28	580	0	0.27	0.027		
Weathered SHALE	140	0	38	N/A	N/A	N	/A		
Rock (Shale)	150	Infinite	N/A	Infinite	N/A	N	/A		

Table 2: Material Properties (Flow Deflector Peninsulas)

5.0 SLOPE STABILITY EVALUATION

The global slope stability of the barrier islands and the flow deflector peninsula was evaluated for short- and long-term conditions. Slope stability of the temporary construction conditions, shoreline stabilization, and wetland shelf have not been analyzed as part of this study and, therefore, are not addressed in this report.

5.1 ANALYSIS APPROACH

The computer software Slide2 (Rocscience Inc., 2020) was used to model the global stability of representative sections of the proposed design using two-dimensional limit-equilibrium methods. This method compares the ratio of forces and moments driving slope movement to forces and moments resisting slope movement for each trial failure surface and calculates a Factor of Safety (FS) against slope failure. The software presents the trial failure surface(s) with the lowest FS as the "critical" shear surface. An FS less than one represents a slope failure and FS = 1 represents a condition of incipient failure.

The failure surfaces identified by the software were analyzed in the program using the Spencer limit equilibrium method. The failure surfaces were also evaluated using the General Limit Equilibrium (GLE)/Morgenstern-Price method as a "check." Both methods satisfy force and moment equilibrium when computing inter-slice forces.

Material properties were modeled using the Mohr-Coulomb material strength model. Granular materials were assumed to behave in a drained manner and were modelled using effective stress strength parameters for short- and long-term conditions.

The analysis was performed for both low- and high-water conditions. The low water datum (LWD) level is at 569.67 ft above mean sea level and the 100-yr floodplain water level is at 577.00 ft as per the Design Drawings (Appendix B). The analysis only considered failure surfaces with a minimum depth of 3 ft, or greater, to exclude shallow, surficial sloughing failures from the results.

5.2 SLOPE STABILITY ANALYSIS RESULTS

Table 3 summarizes the results of the slope stability analyses. The table presents the calculated and required minimum factors of safety associated with each condition. The cross-section geometry, the soil and groundwater conditions, and the critical failure surfaces for the cases analyzed are depicted graphically in the output files from the Slide2 software (Appendix C).

Creater	Watar		Minimum	Minimum
Section	Level	Analysis Condition	FS	FS
	LWD	Immediately after Construction (Short- Term; Total Stress)	1.9	1.3
Type A		Long-Term (Effective Stress)	1.6	1.5
Island	100-yr	Immediately after Construction (Short- Term; Total Stress)	1.7	1.3
	Floodplain	Long-Term (Effective Stress)	1.7	1.5
TD	LWD	Immediately after Construction (Short- Term; Total Stress)	1.9	1.3
I ype B		Long-Term (Effective Stress)	1.6	1.5
Island	100-yr	Immediately after Construction (Short- Term; Total Stress)	1.7	1.3
	Floodplain	Long-Term (Effective Stress)	1.7	1.5
Flow Deflector	LWD	Immediately after Construction (Short- Term; Total Stress)	1.5	1.3
Deficetor		Long-Term (Effective Stress)	1.8	1.5
Revised	100-yr	Immediately after Construction (Short- Term; Total Stress)	1.8	1.3
Design	r loodplain	Long-Term (Effective Stress)	1.8	1.5

Table 3: Slope Stability Analysis Results

This analysis indicates that the calculated factor of safety against slope failure meets the minimum requirements prescribed for the long-term and short-term conditions.

6.0 SETTLEMENT ANALYSIS

The settlement analysis was performed for the construction of the barrier islands using Settle3 software. Engineering parameters of the native soils used for the settlement analysis were determined using published correlations and regional data from NTH's files. The dimensions of the barrier island embankment and flow deflector peninsula were determined from the available design drawings (Appendix B) and the information provided by SmithGroup by email. On the basis of the subsurface conditions and the engineering parameters of the native soils underlying the embankment, the total estimated settlement for the barrier islands ranges between 3.9 and 4.4 inches and for the flow deflector peninsula it ranges from 6.7 to 8.6 inches as shown in Table 4. The estimated settlement for the flow deflector peninsula is based on the assumption that the stone for peninsula construction will mix with the very soft silty clay to reduce its compressibility. Thus, coefficients of compressibility (Cc and Cr) for the upper very soft clay layer were reduced/ "improved" to 0.2 and 0.02, respectively.

Cross section	Total Settlement (inches) (10 Years after Completion)
Type A Barrier Island	3.9
Type B Barrier Island	4.4
Flow Deflector Peninsula	6.7 to 8.6

Table 4: Settlement Analysis Results

7.0 **RECOMMENDATIONS**

Based on the results of our stability analyses at the project site, it appears that the factor of safety for the proposed embankment configuration is adequate for new construction. For Barrier Islands, any soft or loose soil materials at the mudline should be removed prior to placement of embankment fill material, and the embankment fill should be placed over competent subgrade soils that are at least of a stiff consistency or of a medium compact condition. Based on the information obtained during this study, we expect that competent native soils should be encountered at an elevation of about 568 feet.

For flow deflector peninsulas, the embankment fill should be placed over the existing soft soils and the "key" at the toe should extend into the medium to stiff gray silty clay to an elevation of about 556.3 ft and the minimum proposed width of toe is approximately 8 feet.

8.0 LIMITATIONS

The evaluations and recommendations regarding slope stability and settlement have been formulated on the basis of the information obtained during the course of this study, the assumptions stated herein relating to the proposed project, and the information provided to us, some of which may be preliminary and approximate. Our understanding of this data has been

outlined in the pertinent sections of this report. Any significant changes in this information should be brought to our attention for review, particularly those related to the prevailing subsurface conditions.

This report is intended for the exclusive use of SmithGroup, Friends of the Detroit River, and the USFWS for the Sugar Island Habitat Restoration Project in Grosse Ile Township, Michigan. The work was performed in accordance with the prevailing standard of practice in this area at the time the work was performed. No other warranty, express or implied, is provided or intended. This report presents NTH's opinion as of this date, based on the results of the study described herein and on the information provided during the course of the study. The results of this study may not be relied upon by parties other than the ones identified above without the prior knowledge and written consent of NTH.

The scope of the present study was limited to an evaluation of subsurface conditions and slope stability. No environmental, hydrological, or chemical testing or analyses were performed as part of this geotechnical evaluation.

APPENDIX

Test Boring Location Plan, Figure 1; NTH General Notes, Figure 2; Logs of Test Boring, Figure 3; Tabulation of Laboratory Test Data, Figure 4; Design Soil Profiles, Figures 5A-5B

NTH Consultants, Ltd.

A Neyer, Tiseo & Hindo Company

GENERAL NOTES

TERMINOLOGY

Unless otherwise noted, all terms utilized herein refer to the Standard Definitions presented in ASTM D 653.

PARTICLE SIZES

CLASSIFICATION

The major soil constituent is the principal noun, i.e., clay, silt, sand, gravel. The second major soil constituent and other minor constituents are reported as follows:

Boulders Cobbles Gravel - Coarse	 Greater than 12 inches (305mm) 3 inches (76.2mm) to 12 inches (305mm) 3/4 inches (19.05 mm) to 3 inches (76.2mm) No. 4 = 3/16 inches (475mm) to 3/4 inches (19.05 mm) 	Second Major Constituent (percent by weight)	Minor Constituents (percent by weight)
Sand - Coarse Medium	 No. 4 (2.00mm) to No. 4 (4.75mm) No. 40 (0.425mm) to No. 10 (2.00mm) 	Trace - 1 to 12%	Trace - 1 to 12%
Fine Silt	- No. 200 (0.074mm) to No. 40 (0.425mm) - 0.005mm to 0.074mm	Adjective - 12 to 35% (clayey, silty, etc.)	Little - 12 to 23%
Clay	- Less than 0.005mm	And - Over 35%	Some - 23 to 33%

COHESIVE SOILS

If clay content is sufficient so that clay dominates soil properties, clay becomes the principal noun with the other major soil constituent as modified; i.e., silty clay. Other minor soil constituents may be included in accordance with the classification breakdown for cohesionless soils; i.e., silty clay, trace of sand, little gravel.

Unconfined Compressive <u>Strength (psf)</u>	Approximate <u>Range of (N)</u>
Below 500	0 - 2
500 - 1000	3 - 4
1000 - 2000	5-8
2000 - 4000	9 - 15
4000 - 8000	16 - 30
8000 - 16000	31 - 50
Over 16000	Over 50
	Unconfined Compressive <u>Strength (psf)</u> Below 500 500 - 1000 1000 - 2000 2000 - 4000 4000 - 8000 8000 - 16000 Over 16000

Consistency of cohesive soils is based upon an evaluation of the observed resistance to deformation under load and not upon the Standard Penetration Resistance (N).

COHESIONLESS SOILS

Density <u>Classification</u>	Relative Density %	Approximate <u>Range of (N)</u>
Very Loose	0 - 15 16 - 35	0 - 4 5 - 10
Medium Compact	36 - 65	11 - 30
Compact	66 - 85	31 - 50
Very Compact	86 - 100	Over 50

Relative density of cohesionless soils is based upon the evaluation of the Standard Penetration Resistance (N), modified as required for depth effects, sampling effects, etc.

SAMPLE DESIGNATIONS

- AS Auger Sample directly from auger flight BS Miscellaneous Sample bottle or bag

- S Split Spoon Sample ASTM D 1586
 LS Split Spoon Sample S with Liner Insert 3 inches in length ST Shelby Tube Sample 3 inch diameter unless otherwise noted
- PS Piston Sample 3 inch diameter unless otherwise noted
- RC Rock Core NX core unless otherwise noted
- CS Continuous Sample from rock core barrel or continuous sampling device
 VS Vane Shear

STANDARD PENETRATION TEST (ASTM D 1586) - A 2.0" outside-diameter, 1-3/8" inside-diameter, split barrel sampler is driven into undisturbed soil by means of a 140-pound weight falling freely through a vertical distance of 30 inches. The sampler is normally driven three successive 6-inch increments. The total number of blows required for the final 12 inches of penetration is the Standard Penetration Resistance (N).

Project Name: Sugar Island

Project Location: Grosse Ile Township, Michigan

NTH Consultants, Ltd.

NTH Proj. No.: 61-190115-01

	SUBSURFACE PROFILE						SOIL SAMPLE DATA							
	ELEV. (FT)	PRO- FILE	ELEV	WATER SURFACE ELEVATION: 574.0	DEPTH	DEPTH (FT)	SAMPLE TYPE/NO.	BLOWS/ 6-INCHES	STD. PEN RESIST. (N)	REC (in)	FIELD TEST (ppm)	MOIST. CONTENT (%)	DRY DENSITY (PCF)	UNCONF. COMP ST (PSF)
-	- - 570 -		569.0 568.5	WATER Detroit River Black SAND, Saturated Stiff to Very Stiff Brown SILTY CLAY with	5.0	 		25						
-	- 5 <u>65</u> -		.567.5	Trace of Sand and Gravel, Saturated	6.5	 - 10	LS-1 LS-2 LS-3 LS-4	5 2 5 7 3 3 6 5 7 10 6	10 12 9 17	10 18 16 1		14.5	123.6	*4500 *5000 4500
-	- 5 <u>60</u> - -		- - - -	Stiff to Very Stiff Gray SILTY CLAY with Trace of Sand and Gravel, Saturated		 - 15 	LS-5 LS-6 LS-7	8 12 3 5 9 5 50/5	20 14 50+	7				*4000 *4500 *4500
1	555 - - 550 -		554.0	END OF BORING AT 20.0 FEET.	20.0	20	<u>LS-8</u>	9 6 13	19	8				*4000
BORING 61-190115-01.GPJ NTH CORPORATE.GDT 12/	545 Total Drillin Drillin Inspe Contr Drillin Drillin 4" (Moi	Depth: ng Star ng End ector: ractor: r: ng Meth Casing J unted C	t Date: Date: Date: Advanc	20 FT 10/2/20 10/2/20 D. Verge 7NT Engineering F. Smith ced to Depth Using CME-750X ATV	Wate No Drii Not * =	r Level Meanir lling Tai es: Pocket	Obsen gful Gr king Pla Penetr	vation: oundwa ace Bela ometer	ater Obs ow Rive	servatic r Surfa	on was ce	Possibl	e Due t	0
LOG OF TEST	Plugg Bac	ging Proc	ocedui with sc	r e: il cuttings.	Approximate GPS Coordinates: N: 217446.12 E: 13455514.65 Figure No. 3									

NTH Consultants, Ltd.

NTH Proj. No.: 61-190115-01

	SUBSURFACE PROFILE							SOIL SAMPLE DATA					
ELE (F1	V. PRO-) FILE	ELEV	WATER SURFACE ELEVATION: 574.0	DEPTH	DEPTH (FT)	SAMPLE TYPE/NO.	BLOWS/ 6-INCHES	STD. PEN RESIST. (N)	REC (in)	FIELD TEST (ppm)	MOIST. CONTENT (%)	DRY DENSITY (PCF)	UNCONF COMP ST (PSF)
- - 57	0	569.0	WATER Detroit River	5.0	 	-							
- - <u>56</u>	5				 	LS-1 LS-2 LS-3	4 7 1 6 6 1 5 8 3 5	14 12 13	7 7 15				*2000 *3000 *4000
- - <u>56</u> -	0		Stiff to Very Stiff Gray SILTY CLAY with Trace of Sand and Gravel, Saturated		 15 	LS-4 LS-5 LS-6 LS-7	7 3 5 9 7 7 10 6 7 12	12 14 17 19	16 17 17 17				*2250 *4500 *4000 *4000
- - 55 - -	5	554.0	END OF BORING AT 20.0 FEET.	20.0	 <u>20</u>	LS-8	31 9 13	22	15				*5000
DRPORATE.GDT 12/30/20 FG 1 12/30/20 FG 1 2/30/20	0												
	tal Depth illing Sta illing End spector: ontractor: iller: illing Met 4" Casing Mounted I	rt Date: d Date: d Date: Advanc Drill Rig	20 FT : 10/2/20 10/2/20 D. Verge 7NT Engineering F. Smith Deced to Depth Using CME-750X ATV		Water Level Observation: No Meaningful Groundwater Observation was Possible Due to Drilling Taking Place Below River Surface Notes: * = Pocket Penetrometer								0
IN 100 OF TES	Plugging Procedure: Backfilled with soil cuttings.					Approximate GPS Coordinates: N: 217050.52 E: 13454825.71 Figure No 3						o. 3	

Project Location: Grosse Ile Township, Michigan

NTH Consultants, Ltd.

NTH Proj. No.: 61-190115-01

	SUBSURFACE PROFILE							SOIL SAMPLE DATA						
E	ELEV. (FT)	PRO- FILE	ELEV	WATER SURFACE ELEVATION: 574.0	DEPTH	DEPTH (FT)	SAMPLE TYPE/NO.	BLOWS/ 6-INCHES	STD. PEN RESIST. (N)	REC (in)	FIELD TEST (ppm)	MOIST. CONTENT (%)	DRY DENSITY (PCF)	UNCONF. COMP ST (PSF)
-	- - 570 - -			WATER Detroit River		 <u>5</u> 								
-	- 565 -		565.0 564.5	Black SILTY CLAY with Organics (Roots Foliage), Saturated Very Soft to Soft Gray SILTY CLAY, with Trace of Sand and Gravel and Frequent	9.0 , 9.5		LS-1 LS-2	WOH WOH WOH WOH WOH		9		38.3	72.6	*500
-	560		560.5	Sand Seams, Saturated Medium to Stiff Grav SILTY CLAY with	13.5		LS-3	WOH WOH 1 4 6	10	1				*500
-	-		557.5	Trace of Sand and Gravel, Saturated Very Stiff to Hard Gray SILTY CLAY with Trace of Sand and Gravel, Moist	16.5 1 18 0		LS-5	2 4 7 3 25 9	11	10				*1750
-	- <u>555 </u>			Medium to Stiff Gray SILTY CLAY with Trace of Sand and Gravel, Saturated			LS-7	6 7 5	12	8				*1000
-	- 550		552.0 550.4	BEDROCK, Shale END OF BORING AT 23.6 FEET.	22.0		LS-8	30 50/5"	50+	4				
CORPORATE.GDT 12/30/20	- - - 545													
T BORING 61-190115-01.GPJ NTH	Total Drillin Drillin Inspe Cont Drille Drillin 4" (Mo	Depth: ng Star ng End ector: ractor: ractor: ng Meth Casing J unted D	t Date Date: Date: Advan	23.6 FT : 10/3/20 10/3/20 D. Verge 7NT Engineering F. Smith ced to Depth Using CME-750X ATV	Wate No Dri Not * =	r Level Meanin lling Tai es: Pocket	Observ ogful Gr king Pla Penetr	vation: oundwa ace Belo ometer	ater Obs ow Rive	servatic r Surfa	on was . ce	 Possibl	e Due t	0
LOG OF TES	Plugg Bad	ging Proceeding	ocedu with so	re: pil cuttings.	App N:	roximat 217618	e GPS .3 E: 1	Coordi 345442	n ates: 20.33			Fig	gure No	o. 3

Project Location: Grosse Ile Township, Michigan

NTH Consultants, Ltd.

NTH Proj. No.: 61-190115-01

	SUBSURFACE PROFILE					SOIL SAMPLE DATA								
E	ELEV. (FT)	PRO- FILE	ELEV	WATER SURFACE ELEVATION: 574.0	DEPTH	DEPTH (FT)	SAMPLE TYPE/NO.	BLOWS/ 6-INCHES	STD. PEN RESIST. (N)	REC (in)	FIELD TEST (ppm)	MOIST. CONTENT (%)	DRY DENSITY (PCF)	UNCONF. COMP ST (PSF)
-	- - 570 - -		567.0	WATER Detroit River	7.0	 _ 5	-							
-	- <u>565</u> -					 _ <u>10</u>	LS-1 LS-2	5 6 8 7 9 9 6 8	14 18 20	15 17 7				*6750 *7500 *7000
-	- - 560	55 Stiff to Very Stiff Gray SILTY CLAY with Trace of Sand and Gravel, Saturated			 _ 15	LS-5 LS-5	12 4 8 11 6 9 13 7	19 22	16 15				*8000 *8000	
-	- - 555					 20	LS-6 LS-7	12 15 9 7 8	27 15	78				*8000
-	- - 550 -	553.5 Medium Sa	Medium Gray SILTY CLAY with Trace of Sand and Gravel, Saturated	20.5	 _ 25	<u>LS-8</u> ST-1	3 3 5 U S H	8	<u>18</u> 9		28.5	99.2	1160 #1600	
0T 12/30/20	545 544.		544.0	Weathered Rock; SHALE Fragments Interbedded with Layers of Medium Stiff Gray SILTY CLAY with Trace of Sand and Gravel	30.0	 <u>-</u> -	<u>LS-9</u>	8 7 10	17	3				
TH CORPORATE.GC	- - 540		542.5	EDROCK; Shale END OF BORING AT 31.5 FEET.	31.5		LS-10	50/3"	50+					
TEST BORING 61-190115-01.GPJ NI	Total Drillin Inspe Conti Drille Drillin 4" (Mot	Depth: ng Star ng End ector: ractor: r: ng Meth Casing J unted D ging Pre	t Date: Date: nod: Advand prill Rig	31.5 FT 10/5/20 10/5/20 D. Verge 7NT Engineering F. Smith ced to Depth Using CME-750X ATV e:	Wate No Dril Not * = # -	r Level Meanir ling Ta e s: Pocket Torvan	Observ ogful Gr king Pla Penetr e	vation: oundwa ace Belo ometer	ater Obs ow Rive	servatic r Surfa	on was . ce	Possibl	e Due t	0
LOG OF	Ber	ntonite l	hole pl	ug.	Appi N: 2	oximat 216077	t e GPS .92 E:	Coordi 134549	n ates: 86.15			Fig	gure No	o. 3

Project Location: Grosse Ile Township, Michigan

NTH Consultants, Ltd.

NTH Proj. No.: 61-190115-01

	SUBSURFACE PROFILE					SOIL SAMPLE DATA								
	ELEV. (FT)	PRO- FILE	ELEV	WATER SURFACE ELEVATION: 574.0	DEPTH	DEPTH (FT)	SAMPLE TYPE/NO.	BLOWS/ 6-INCHES	STD. PEN RESIST. (N)	REC (in)	FIELD TEST (ppm)	MOIST. CONTENT (%)	DRY DENSITY (PCF)	UNCONF. COMP ST (PSF)
-	- - 570 -	-	567.0	WATER Detroit River	7.0	 	-							
-	 		1562.5	Hard to Very Hard SILTY CLAY with Trace of Sand and Gravel, Saturated	11.5	 _ <u>10</u>	LS-1 LS-2 LS-3	7 13 19 8 16 56 11 14 18	32 72 32	12 11				*9000 *9000
-	560		.559.5	Stiff to Very Stiff Gray SILTY CLAY with Trace of Sand and Gravel, Saturated	14.5	 	LS-4 LS-5	3 8 9 2 3 7	17 10	15 15				*6500 *3000
	- - 555 -		Very Hard Gray SILTY CLAY with Trace of Sand and Gravel, Saturated	21.0		LS-6 LS-7	31 31 81+ 50/5"/5" 18 33 70 37	5				*9000		
-	- - <u>550</u>		548.0	Stiff Gray SILTY CLAY with Trace of Sand and Gravel, Saturated	26.0	 <u>25</u>	<u>LS-8</u>	7 8 9	17	18				*2500
GDT 12/30/20	- 		544.0	Weathered BEDROCK; SHALE Fragments with Sand and Gravel, Saturated BEDROCK; Shale	30.0	 <u>30</u>	LS-9	23 10 12	22	5				
H CORPORATE	- 540		072.0	END OF BORING AT 31.5 FEET.						0				
TEST BORING 61-190115-01.GPJ NT	Total Drillin Drillin Inspe Contr Drille Drillin 4" (CM	Depth: ng Star ng End ector: ractor: er: ng Meth Casing IE-750X	t Date: Date: nod: with W	31.5 FT : 10/5/20 10/5/20 D. Verge 7NT Engineering F. Smith /ater Excavation Advanced Using Mounted Drill Rig re:	Wate No Dril Not * =	r Level Meanin ling Tai es: Pocket	Observ ogful Gr king Pla	vation: oundwa ace Belo ometer	ater Obs ow Rive	servatic r Surfa	n was ce	Possibl	e Due t	0
LOG OF	Bac	ckfilled	with be	entonite hole plug.	Appi N: 2	oximat 216696	t e GPS .39 E:	Coordi 134554	n ates: 86.51			Fig	gure No	o. 3

Sugar Island Habitat Restoration Project Project No. 61-190115-01 NTH Consultants, Ltd. Gross Ile Township, Michigan **TABULATION OF LABORATORY TEST DATA** Natural Water Content (% of dry weight) Unconfined Compressive Strength (Tsf) Depth of Sample Tip (ft) Unified Soil Classification Boring / Test Pit / Probe Designation Elevation of Sample Tip (ft) In-Place Dry Density (lbs/cu.ft) Proctor (Maximum Dry Density- lbf/ft²) PARTICLE SIZE DISTRIBUTION (%) ATTERBERG LIMITS (%) Failure Strain (%) PERMEABILITY (CM/SEC) Sample Number Plasticity Index Medium Sand Coarse Sand Plastic Limit Liquid Limit Fine Sand Colloids Gravel Clay Silt 9.5 14.5 TB-1 LS-3 564.5 2.25 15.0 123.6 ---------TB-3 LS-2 12.0 562.0 0.14 15.0 38.3 72.6 --------TB-4 LS-8 22.5 551.5 0.58 15.0 28.5 99.2 --------

DETROIT RIVER WATER SURFACE 574' WATER 6' 568' Stiff to Very Stiff Gray SILTY CLAY (varies 5′ – 7′) $\gamma = 142 \text{ pcf}$ Su = 2,250 psf $\omega_n = 15\%$ e₀ = 0.39 Cc = 0.13 Cr = 0.013 22′ 552′ Medium Gray SILTY CLAY $\begin{array}{ll} \gamma = 127 \; pcf & Su = 580 \; psf & \omega_n = 299 \\ e_0 = 0.78 & Cc = 0.27 & Cr = 0.027 \end{array}$ ω_n = 29% LL = 38 PI = 20 _____ 548.5′ 25.5′ _____ Weathered SHALE $y = 140 \text{ pcf}^{*} \qquad \phi = 38^{\circ}$

30′ _____

* Estimated

544'

DETROIT RIVER WATER SURFACE

		WATER		•
, 				
		Very Soft SILTY CLAY	,	
	γ = 100 pcf	Su = 150 psf	ω _n = 38%	
	e ₀ = 1.1	Cc = 0.34	Cr = 0.034	
3.5′				
	N	ledium Gray SILTY CL	AY	
	γ = 127 pcf	Su = 580 psf	ω _n = 29%	
	e ₀ = 0.78	Cc = 0.27	Cr = 0.027	
	l	_L = 38 PI = 2	20	
2′				
		Weathered SHALE		
	$\gamma = 2$	140 pcf * φ	= 38°	
.3.6′				
		ROCK		
		(Shale)		

* Estimated

APPENDIX

Barrier Island Design Drawings by SmithGroup

N	DATUM/ELEVATIOI 100-YEAR FLOODF ORDINARY HIGH W LOW WATER DATL	DATUM ELEVATIONS N NAVD88 IGLD85 PLAIN 577.00 576.73 VATER MARK (OHWM) 573.77 573.50 JM (LWD) 569.67 569.40	SUGAR ISLAND HABITAT RESTORATION
R	DATUM CON	VERSION: NAVD88 - 0.27 FEET = IGLD85	DETROIT, MICHIGAN
		LEGEND	
			PREPARED FOR:
SS DIKE			FRIENDS OF THE
		PROPOSED OHWM CONTOUR	20600 EUREKA ROAD, SUITE 250
		PROPOSED 100-YEAR CONTOUR	TAYLOR, MI 48180
		PLANTING AREA	
		RIPRAP	SMITHGROUP
		COARSE WOODY DEBRIS - BURIED &	201 DEPOT STREET
		BALLAST	SECOND FLOOR ANN ARBOR, MI 48104
		COARSE WOODY DEBRIS - ANCHORED	734.662.4457 www.smithgroup.com
		ROCK SPAWNING REEF	
		AGGREGATE SPAWNING BED	
		SAND SLOPE	
	*	WOODY SPAWNING STRUCTURES	
		SUBMERGED ROCK SLAB STRUCTURE	
		SNAKE HIBERNACULUM	
/	PF	HASING NOTES	
	THIS PROJECT IS FUNE APPLIED FOR IN JUNE, JUNE 2021. ALL WORK TWO MOBILIZATIONS.	DED IN 2 PHASES. PHASE 1 FUNDING HAS BEEN 2020. PHASE 2 FUNDING WILL BE APPLIED FOR IN WILL BE PERFORMED BY THE SAME CONTRACTOR IN	
	PHASE 1 (CONSTRUCT THIS PHASE INCL ISLANDS 2, 3, 4 AN SIDE, AND THE PE INDICATED ON TH SPAWINING AGGR	TION 2021) UDES ALL WORK ASSOCIATED WITH BARRIER ND 5, THE EXPANDED BEACH ON THE ISLAND'S EAST ENINSULA ON THE ISLANDS SOUTHEAST SIDE AS HIS PLAN. WORK ALSO INCLUDES 3 SHALLOW REGATE BEDS	PRELIMINARY DESIGN - REVISED 1 12JUNE2020 PRELIMINARY DESIGN 0 17APRIL2020
	PHASE 2 (CONSTRUCT	ION 2022)	SEALS AND SIGNATURES
	DEEP WATER AG PENINSULA, SHO WORK IN THE PR	GREGATE BED, EMERGENT WETLAND, WESTERN RELINE STABILIZATION, AND ALL OTHER REMAINING	NOT
	WORKIN THE FR		FOR
			CONSTRUCT
			CTION
			γγ
			KEY PLAN
			DRAWING TITLE OVERALL LAYOUT & MATERIALS READ
			SCALE: 1" = 100'
			PROJECT NUMBER
			CS100
			DRAWING NUMBER

1/8" = 1'-0"

DATUM ELEVATIONS									
DATUM/ELEVATION NAVD88 IGLD85									
100-YEAR FLOODPLAIN	577.00	576.73							
ORDINARY HIGH WATER MARK (OHWM)	573.77	573.50							
LOW WATER DATUM (LWD)	569.67	569.40							
		•							

DATUM CONVERSION: NAVD88 - 0.27 FEET = IGLD85

SUGAR ISLAND HABITAT RESTORATION

DETROIT, MICHIGAN

		STONE SIZE							
STRUCTURE		LAYER	D50 (FEET)	SIZE RANGE					
		ARMOR LAYER (TYPE A)	2.6	1-2 tons					
	BARRIER ISLAND - TYPE A	UNDER LAYER (TYPE A)	1.2	200-400 lb					
		CORE (TYPE A)	0.2	1-2 lb					
		ARMOR LAYER (TYPE B)	3.1	2-3 tons					
	BARRIER ISLAND - TYPE B	UNDER LAYER (TYPE B)	1.4	300-600 lb					
		CORE (TYPE B)	0.2	2-3 lb					
		ARMOR LAYER (TYPE C)	1.2	200-330 LB					
	WEILAND SHELF	UNDER LAYER (TYPE C)	0.5	20-35 LB					
		ARMOR LAYER (TYPE D)	1.9	900-1500 LB					
	SHURELINE STADILIZATION	UNDER LAYER (TYPE D)	0.9	9-15 LB					

PREPARED FOR:

FRIENDS OF THE DETROIT RIVER 20600 EUREKA ROAD, SUITE 250 TAYLOR, MI 48180

SMITHGROUP

201 DEPOT STREET SECOND FLOOR ANN ARBOR, MI 48104 734.662.4457 www.smithgroup.com

ISSUED FOR

REV DATE

PRELIMINARY DESIGN - REVISED 1 12JUNE2020 PRELIMINARY DESIGN 17APRIL2020

KEY PLAN

DRAWING TITLE CROSS SECTIONS

0'	1/2"	1"	2"
		. Λ (
	SUALE	:. At	SNUTED

10626

SCALE

DRAWING NUMBER

1/4" = 1'-0"

1/8" = 1'-0"

APPENDIX

Soil Stability Plots

Attachment 1

	Safety	<pre>/ Factor 1.0 1.1 1.2 1.3 1.4 1.5 1.6</pre>
		1.7 1.8 1.9
		2.0+
	.	
40 50 60		- - - 70
Ferm: Total Stress)		
NTH Consultants. Ltd.		
Figure 4		
J		

<u>6 ft</u>
6.2 ft
50 60 70 80
NTH Consultants, Ltd.
Figure 6

Attachment 1

Safety Factor 1.0 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0+		Q . C . h	
I.1 I.2 I.3 I.4 I.5 I.6 I.7 I.8 I.9 2.0+		Sarety	Factor 1.0
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0+			1.1
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0+			1.2
1.4 1.5 1.6 1.7 1.8 1.9 2.0+			1.3
1.5 1.6 1.7 1.8 1.9 2.0+			1.4
1.6 1.7 1.8 1.9 2.0+			1.5
1.7 1.8 1.9 2.0+			1.6
1.8 1.9 2.0+			1.7
1.9 2.0+			1.8
2.0+			1.9
Ferm; Total Stress) NTH Consultants, Ltd. Figure 9			2.0+
Ferm; Total Stress) NTH Consultants, Ltd. Figure 9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u> </u>
Ferm; Total Stress) NTH Consultants, Ltd. Figure 9			
Ferm; Total Stress) NTH Consultants, Ltd. Figure 9			
Ferm; Total Stress) NTH Consultants, Ltd. Figure 9			
NTH Consultants, Ltd. Figure 9			
Figure 9			
	Ferm; Total Stress) NTH Consultants, Ltd.		

Attachment 1

	[·····	·····		
-		Material Name	Color	Unit Weight (lbs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	
		V Soft Gray Silty Clay - Su	85 - 3 20 - 4	100	Mohr- Coulomb	150	0	
- - - -		Soft to Medium Gray Silty Clay - Su		127	Mohr- Coulomb	580	0	
-		Rock (Shale)		150	Infinite strength			
-		Stone Armor		140	Mohr- Coulomb	0	42	
		Stone Core		140	Mohr- Coulomb	0	41	
		Silty Sand		120	Mohr- Coulomb	0	31	
-		Compacted Clay (FILL) - Su		125	Mohr- Coulomb	2000	0	
-								
	1				2	2	1	<12.3 ft →
			0				7.6 ft	1.0
								E
- - -	170 180	190	210	220	2302	240 250	0	260 270
	NT-I	Project				Sugar Island Hab	itat Restorati	ion - Flow Deflector Peninsula
		Analysis Description				Slope Sta	bility Cross-Se	ection - Original Design
		Drawn By		S. McM	Manus			Company
DE 9.008		Date		3/12/	2021			

	Safety	y Factor 1.0 1.1
		1.2 1.3 1.4
		1.5 1.6
		1.7
		1.8
		1.9
		2.0+
290 300 310	320	330
on (Short Term; Total Stress)		
NTH Consultants, Ltd.		
Figure 3		

				Safety	/ Factor 1.0
					1.1
					1.2
					1.3
					1.4
					1.5
					1.6
					1.7
					1.8
					1.9
					2.0+
290	300	310	320	330	
on (Short Term;	Total Stre	ss)			
NTH Co	onsultants, L	td.			
	Figure 5				

	Safety	Factor 1.0
		1.1
		1.2
		1.3
		1.4
		1.5
		1.6
		1.7
		1.8
		1.9
		2.0+
300 310 320 330		340
fective Stress)		
NTH Consultants, Ltd.		
Figure 6		

	Safety	Factor
		1.1
		1.2
		1.3
		1.4
		1.5
		1.6
		1.7
		1.8
		1.9
		2.0+
300 310 320 33	30	340
nstruction (Short Term; Total Stress)		
NTH Consultants, Ltd.		
Figure 7		

	Safety Factor
	1.1
	1.2
	1.3
	1.4
	1.5
	1.6
	1.7
	1.8
	1.9
	2.0+
300 310 320 330	340
Term (Effective Stress)	
NTH Consultants, Ltd.	
rigule o	

	Safety	<pre>Factor 1.0 1.1 1.2 1.3 1.4</pre>
		1.1 1.2 1.3 1.4
		1.2 1.3 1.4
		1.3 1.4
		1.4
		1
		1.5
		1.6
		1.7
		1.8
		1.9
		2.0+
80 290 300 310	320	330
nstruction (Short-Term; Total Stress)		
nstruction (Short-Term; Total Stress) NTH Consultants, Ltd.		

			Safety	Factor 1.0
				1.1
				1.2
				1.3
				1.4
				1.5
				1.6
				1.7
				1.8
				1.9
				2.0+
*****				*****
	~~~~~~			
310 320	330	340	35	0
erm (Effective Stress)				
NTH Consultants, Ltd	d.			
Figure 10				